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In this work we analyze the convenience of nuclear barreled b*-algebras as a
better mathematical framework for the formulation of quantum principles than
the usual algebraic formalism in terms of C*-algebras. Unbounded operators on
Hilbert spaces have an abstract counterpart in our approach. The main results of
the C*-algebra theory remain valid. We demonstrate an extremal decomposition
theorem, an adequate functional representation theorem, and an extension of the
classical GNS theorem.

1. INTRODUCTION

In the framework of the formulation of quantum mechanics in terms
of ª abstractº C*-algebras, observable magnitudes are represented by the

Hermitian elements of the algebra that characterizes the physical system

under consideration.

The GNS construction leads to a representation of this algebra as an

algebra of bounded operators on a Hilbert space [Bratteli]; unbounded opera-

tors do not have an abstract counterpart in this algebraic approach.
This fact is really a disadvantage of the theory: the algebraic approach

is intended to be a generalization of the traditional Hilbert space formulation

of quantum mechanics and in this context most of the generators of the

symmetry groups that appearÐ in particular, most of the Hamiltonian opera-

tors, the momentum operator, and the position operatorÐ are given by

unbounded operators, and then, in algebraic terms, they cannot represent
measurable quantities.
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The problem could be solved in several ways (see, for example, [Ruelle]

and [Roberts]), but the most natural seems to be the consideration of topologi-

cal algebras not necessarily normed.
Obviously, these algebras must satisfy certain conditions in order to

guarantee the physical consistency of the theory.

In this work we study the case of complete locally multiplicatively

convex *-algebras (that is, complete locally convex *-algebras in which the

topology is defined by a basis of neighborhoods of zero composed by idempo-

tent sets) that, in addition, are symmetric, barreled, and nuclear.
Complete locally multiplicatively convex symmetric *-algebras are the

natural generalization of C*-algebras. Commonly they are called b*-algebras
[Allan]. The nuclearity condition guarantees the validity of some of the

properties of finite-dimensional algebras and regularizes the tensor product

[Treves]. Finally, we ask for barreledness in order to have a ª niceº spec-

tral theory.
We will show that the main results of the formulation in terms of

C*-algebras remain valid. For example, we will demonstrate an extremal

decomposition theorem analogous to the classical Krein±Millman lemma (see

Section 3). We will prove also that every closed commutative subalgebra

admits a functional representation on a locally compact space in such a way
that the topology coincides with the topology of uniform convergence on its

compact subsets (see Section 4). On the other hand, we will show that the

generalization of the GNS representation leads to an essentially self-adjoint

representation of the algebra as an algebra of (in general, unbounded) opera-

tors on a separable Hilbert space with a common domain that, provided with

a convenient topology, constitutes a rigged Hilbert space (see Section 5).
As examples of nuclear barreled b*-algebras that are commonly used

in physics we mention the tensor algebra over a nuclear FreÂchet space (pro-

vided, of course, with a conjugation) and the trivial case of finite-dimensional

C*-algebras (see Section 6).

2. b*-ALGEBRAS: DEFINITIONS AND GENERALITIES

Definition 1. Let ! be a locally convex algebra. ! is a locally multiplica-

tively convex algebra if and only if there exists a basis of neighborhoods of

zero entirely composed of convex idempotent sets, i.e., convex sets that

contain their squares.

In every locally convex space the topology can be defined by a basis

of continuous seminorms. In addition, in the case of a locally multiplicatively

convex algebra, this basis can be chosen in such a way that each seminorm

is a submultiplicative one.
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Proposition 1 [Michael]3.

1. Every normed algebra is locally multiplicatively convex.

2. The direct product of a collection of locally multiplicatively convex

algebras is also a locally multiplicatively convex algebra.

3. Every subalgebra of a locally multiplicatively convex algebra is

locally multiplicatively convex in the relative topology.
4. The quotient algebra of a locally multiplicatively convex algebra

modulo any of its closed bilateral ideals is locally multiplicatively

convex in the inherited topology.

5. An algebra with the weaker topology that makes continuous every

homomorphi sm included in a separating family of homomorphi sms

from the algebra in a corresponding collection of locally multiplica-
tively convex algebras is a locally multiplicatively convex algebra.

Proposition 2 [Arens]. In every locally multiplicatively convex algebra
the multiplication law is jointly continuous. Moreover, if the algebra has a

unit, then inversion is continuous on the subalgebra of invertible elements.

Locally multiplicatively convex algebras are closely related to normed
algebras, as is shown by the following theorem.

Theorem 1. A topological algebra ! is locally multiplicatively convex

if and only if it is isomorphic to a subalgebra of the direct product of a
collection of normed algebras. Moreover, if ! is complete, then it is locally

multiplicatively convex if and only if it is the Hausdorff projective limit of

a family of Banach algebras.

Proof. First, let us assume that ! is a locally multiplicatively convex

algebra not necessarily complete and let {p a } a P I be a basis of submultiplica-

tive seminorms defined on !.

Clearly, the kernel of each of these seminorms

Ker(p a ) 5 {x P !: p a (x) 5 0} (1)

is a bilateral closed ideal of !, that is,

!Ker(p a ) 5 Ker(p a )! 5 Ker(p a ) (2)

for every a P I.
Consider, then, for each a P I, the quotient algebra !/Ker( p a ) and the

respectively submultiplicative quotient norm

3 In brackets we will indicate the references in which the demonstrations of the propositions
and theorems can be found. We will reproduce just those demonstrations that are important
for the comprehension of this work.
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pÄ a : !/Ker( p a ) ® R +

f a (x) ® pÄ a ( f a (x)) 5 p a (x) (3)

where

f a : ! ® !/Ker( p a )

x ® f a (x) (4)

is the canonical homomorphism from ! on !/Ker(p a ).

Finally, let ! a be the normed algebra which is !/Ker( p a ) provided with

the topology defined by pÄ a .

The topology in ! is the weaker that makes each f a a continuous

application. So,

f : ! ® &
a P I

! a

x ® f (x) 5 ( f a (x)) a P I (5)

is continuous. With {p a } a P I a basis of seminorms of !, given x P !, x Þ
0, there exists an index a P I such that p a (x) 5 pÄ a ( f a (x)) Þ 0, so, for each

x P !, x Þ 0, one has that f a (x) Þ 0; then f (x) Þ 0 for every x P !, x Þ
0, and ! is isomorphic to a subalgebra of P a P I ! a .

The converse is immediate from Proposition 1, and then the first part

of the theorem is proved.

Suppose now that ! is complete and let !Ä a be the Banach algebra

which is the completion of ! a for every a P I.
Making a $ b if and only if 8 a , 8 b , where 8 a and 8 b are, respectively,

the unitary closed balls of ! a and ! b , it is possible to order the index set I
and make it into a directed system.

So, considering that for each pair x, y P !, f a (x) 5 f a (y) implies that

f b (x) 5 f b ( y), with a $ b , one can define in this case

f a b : ! a ® ! b

f a (x) ® f a b ( f a (x)) 5 f b (x) (6)

and clearly one has that each of these mappings is a continuous homomor-

phism on ! b . Then, each f a b can be uniquely extended to a continuous

homomorphism f Ä a b from !Ä a into !Ä b .

Consider now the direct product P a P I !Ä a and let P a be the projector
of P a P I !Ä a on !Ä a .

It is clear that the Hausdorff projective limit of the collection of Banach

algebras {!Ä a } a P I corresponding to the collection of homomorphi sms

{ f Ä a b } a , b P I, that is,
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+3(!Ä a , f Ä a b ) 5 H x P &
a P I

!Ä a : f Ä a b (P a (x)) 5 P b (x) when a $ b J (7)

is a subalgebra of P a P I !Ä a and that {+3(!Ä a , f Ä a b ) ù P 2 1
a (8 a ): a P I} is

a basis of neighborhoods of zero for +3(!Ä a , f Ä a b ).

Consider, again, the application f defined by equation (5). This homo-

morphism defines an isomorphism from ! into P a P I !Ä a , an isomorphism

that we will denote by f Ä . Because f Ä (!) , +3(!Ä a , f Ä a b ), one has that !
is, in fact, isomorphic to a close subalgebra +3(!Ä a , f Ä a b ) and one can identify
it with its image under f Ä in +3(!Ä a , f Ä a b ). With this convention is immediate

that for every a P I one has that P a (x) 5 f Ä a (x) for every x P !, where we

are denoting by f Ä a the homomorphism that defines f a into !Ä a .

It will be sufficient, then, to show that f Ä (!) is dense in +3(!Ä a , f Ä a b ).

Now, {+3(!Ä a , f Ä a b ) ù P 2 1
a (8 a ): a P I} is a basis of neighborhoods of zero

for +3(!Ä a , f Ä a b ), so it is enough to demonstrate that P a ( f Ä (!)) is dense in
P a (+3(!Ä a , f Ä a b )) for every a P I. But P a ( f Ä (!)) 5 f Ä a (!) 5 ! a , and, on

the other hand, P a (+3(!Ä a , f Ä a b )) , !Ä a . Considering that ! a is dense in

!Ä a , the statement is proved.

The demonstration of the converse follows immediately from the defini-

tion of +3(!Ä a , f Ä a b ) and from Proposition 1. We omit the details. n

Proposition 3 [Michael]. Let ! be a locally multiplicatively convex

algebra and {! a } a P I as in the previous theorem.

1. ! has a unit if and only if, for every a P I, ! a has a unit.

2. An element x P ! is invertible if and only if, for every a P I,
f a (x) P ! a is invertible.

Now, we turn our attention to the concept of a spectrum.

Definition 2. Given a topological algebra !, an element x P ! is

bounded if there exists a complex number l , l Þ 0, such that the set {( l x)n:

n 5 0, 1, 2, . . .} is bounded.

Definition 3. Let ! be a topological algebra with unit and x P ! an

arbitrary element. The resolvent set of x, r (x), is the collection of complex

numbers l P C such that ( l 1 2 x) 2 1 exists and is bounded, with the point

` if x is not bounded. The spectrum of x, s (x), is the complement of the

resolvent set of x, that is,

s (x) 5 r (x)c 5 C 2 r (x) (8)

where C is the one-point compactation of the complex plane. Finally, the

spectral radius of x, S (x), is given by
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S (x) 5 sup{ ) l ) : l P s (x)} (9)

Remark 1. Observe that eventually it can occur that S (x) 5 ` .

Proposition 4 [Arens]. The spectrum of an element of a locally convex

algebra with unit and continuous inversion is a nonempty set.

Proposition 5 [Allan]. Let ! be a locally convex algebra with unit and

x, y P !.

1. If P(x) is a polynomial in x and l P s (x), then P( l ) P s (P(x)).

2. If x is invertible and l P s (x), then l 2 1 P s (x 2 1).

3. If l P s (xy) and l Þ 0, then l P s ( yx).

Theorem 2. Let ! be a complete locally multiplicatively convex algebra

with unit and {!Ä a } a P I the collection of Banach algebras as in Theorem 1.

1. For every element x P ! one has that

s (x) 5 ø
a P I

s a ( f Ä a (x)) (10)

where f Ä a is the canonical homomorphism from ! in !Ä a .

2. For every element x P ! the following is satisfied:

S (x) 5 sup
a P I

S a ( f Ä a (x)) 5 sup
a P I

lim
n ® `

!
n

p a (xn) (11)

Proof. 1. For every l P C , l Þ 0, one has that l P s (x) if and only

if (1 l 2 x) 2 1 exists and is bounded in !. This happens if and only if (1Ä a l 2
f Ä a (x)) 2 1, where 1Ä a is the unit element in !Ä a , exists for some a P I. But that

means that l P s a ( f Ä a (x)) for some a P I. On the other hand l 5 0 P s (x)
if and only if x is not invertible in !. This happens if and only if f Ä a (x) is

not invertible in !Ä a for some a P I, that is, if 0 P s a ( f Ä a (x)) for some a P I.
2. The first equality follows from the previous demonstration. The second

from the known formula for the spectral radius in Banach algebra’ s theory

[Bratteli]. n

Definition 4. An involution on an algebra ! is defined as a conjugate

antiisomorphism of period 2, that is, as an application

*: ! ® !

x ® x* (12)
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that satisfies

(x 1 y)* 5 x* 1 y* (13)

( l x)* 5 l x* (14)

(xy)* 5 y*x* (15)

(x*)* 5 x (16)

for every pair x, y P ! and every l P C . An algebra in which is defined

on an involution is called an involutive algebra or a *-algebra.

Definition 5. A symmetric element of a topological *-algebra with unit

is called Hermitian if and only if its spectrum is contained in the field of the

real numbers. If every symmetric element is Hermitian, then one says that

the involution is Hermitian.

Definition 6. A locally convex *-algebra with unit is called regular if

for every element x P ! it is verified that (1 1 x*x) is invertible. If, moreover,

(1 1 x*x) 2 1 is bounded, then the algebra is called symmetric.

There exists an important case in which regularity implies symmetry.

Proposition 6 [Allan] Let ! be a totally convex *-algebra with unit and
continuous inversion. If for every element x P ! one has that (1 1 x*x) is

invertible, i.e., ! is regular, then ! is symmetric.

Definition 7. A submultiplicative seminorm p defined on a *-algebra !
is regular if it satisfies

p(x*x) 5 p(x)2 (17)

for every x P !.

Definition 8. A complete topological *-algebra in which there exists a
basis of continuous seminorms composed entirely by regular seminorms is

called a b*-algebra.

Proposition 7 [Allan]. Every b*-algebra with unit is regular.

Remark 2. Since it is locally convex and has continuous inversion, it

follows from Proposition 6 that every b*-algebra is symmetric.

Of course, as locally multiplicatively convex algebras are related to
normed algebras, in a similar way, b*-algebras are related to C*-algebras.

Proposition 8. A topological *-algebra is a locally multiplicatively con-

vex *-algebra with a basis of continuous regular seminorms if and only if it

is isomorphic to a *-subalgebra of the direct product of a collection of normed
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regular algebras. The algebra is a b*-algebra if and only if it is the Hausdorff

projective limit of a family of C*-algebras.

The proof of this proposition is essentially the same of that of Theorem 1.
Another connection between b*-algebras and C*-algebras is given by

the following theorem, closely related to the fact that every C*-algebra is

realized through the GNS construction as an algebra of bounded operators

on a Hilbert space.

Theorem 3. Let ! be a barreled b*-algebra with unit and let !0 be the
collection of bounded elements of !. Then ! 5 !0 if and only if ! is a

C*-algebra with unit.

Proof. We will show that if ! 5 !0, then ! is a b*-algebra with unit.

The demonstration of the converse is trivial, so we will omit it.

Let { p a } a P I be a basis of continuous regular seminorms of ! and let
B0 be the set given by

B0 5 {x P !: p a (x) # 1, " a P I} (18)

Observe that B0 is a close, absolutely convex bounded subset of !0, that

B2
0 , B0, that 1 P B0, and that B*0 5 B0. Moreover, one has that any subset

with these properties is included in B0. Let

!(B0) 5 { l x: l P C , x P B0} (19)

Clearly, one has that !(B0) is a *-subalgebra of ! that contains all

normal elements of !0.

In this case, ! 5 !0 5 !(B0), so B0 is absorbing in !. Because ! is

barreled, B0 is a neighborhood of zero of !. But B0 is bounded, so ! is a
normed algebra.

On the other hand, it can be proved [Allan] that the Minkowski functional

associated with B0,

p0: !(B0) ® R +

x ® p0(x) 5 inf { l . 0: (1/ l )x P B0} (20)

defines in !(B0) a norm that makes it a C*-algebra with unit.

The completeness of ! and the fact that all complete norms on a C*-

algebra are equivalent end the demonstration. n

Corollary 1. Let ! be a nuclear barreled b*-algebra with unit and let
!0 be the collection of bounded elements of !. Then ! 5 !0 if and only

if ! is a finite-dimensional C*-algebra with unit.

Proof. The proof is trivial, considering that every nuclear normed space

is finite dimensional [Treves]. n
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In the following sections we will say that an algebra ! is a characteristic
algebra if it is a nuclear barreled b*-algebra with unit.

3. OBSERVABLES AND STATES: THE EXTREMAL
DECOMPOSITION THEOREM

Definition 9. Let ! be a characteristic algebra. An element x P ! will
be called an observable if and only if its spectrum is real. We will denote

the set of observables by !S .

Proposition 9. Let ! be a characteristic algebra. An element is an

observable if and only if it is a symmetric element.

Proof. Let x P ! be an observable. Then, its spectrum is contained in

the real line. So, for every a P I we have that s a ( f Ä a (x)) , R and then f Ä a (x) 5
f Ä a (x)* 5 f Ä a (x*), and x* 5 x. The converse follows from Proposition 7. n

It must be evident now that !S is a real, closed subspace of !, and so

a real, complete nuclear barreled space.

Definition 10. An observable x P !S is positive if it is the square of

another observable, that is, if there exists y P !S such that x 5 y2. We will

denote the set of positive observables by !S+.

Proposition 10. Let ! be a characteristic algebra, !S the collection of

observables, and !S+ the set of positive elements of !S . An observable x P
!S is positive if and only if f Ä a (x) is positive for every a P I.

Proof. If x P !S is positive, one has that there exists an element y P
!S such that x 5 y2. With this, f Ä a (x) 5 f Ä a ( y2) for every a P I. Because

each f Ä a is an homomorphism, one has that f Ä a (x) 5 f Ä a (y)2, so f Ä a (x) is

positive. Reciprocally, suppose that f Ä a (x) 5 f Ä a ( y2) is positive for every a P
I and consider the element y 5 ( ! f Ä a (x)) a P I . It is evident that this element

is an element of !S and that it satisfies x 5 y2. n

Theorem 4. !S+ is a reproductive strict convex cone closed in !S .

Proof. The demonstration of the fact that !S+ is a strict cone is elemental,

like that of its closure in !S . The convexity of !S+ follows from the last

two propositions. Finally, the fact that !S+ is a reproductive cone follows

from the existence of an internal point in !, i.e., the unit element, and from
Proposition 10. n

Theorem 5. An observable is positive if and only if its spectrum is

contained in R +.
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Proof. The demonstration of this proposition follows from the fact that

in every C*-algebra a symmetric element is positive if and only if its spectrum

is in R + and from Proposition 8. n

Definition 11. A functional over !S is positive if it takes nonnegative

values on the cone of positive observables. We will denote the set of positive
functionals by !8S 1 , so we have

!8S 1 5 { r P !8S: r (x) $ 0, " x P !S 1 } (21)

Proposition 11 [Treves]. !8S 1 is a convex strict reproductive cone

(weakly) closed in !8S.

The following theorem is an extension of the known Krein±Millman
lemma.

Theorem 6. Let G be a subcone of !8S 1 . Then G is generated by the set
- G of its extremal elements

G 5 C0( - G ) (22)

where by C 0 we denote the weak closure of the convex hull of the set.

Proof. For the demonstration of this theorem we will use again the
characterization of !S as a projective limit. In the first place we have that

G 5 ø
a P I

G ù 80
a (23)

where 80
a we denote the polar set associated with the seminorm p a , that is,

80
a 5 { r P !8S: ) r (x) ) # 1, " x P 8 a } (24)

This follows from the fact that, because !S is barreled, every bounded

subset of !8S is equicontinuous. By identical arguments one has that

- G 5 ø
a P I

- G ù 80
a 5 ø

a P I
- ( G ù 80

a ) (25)

On the other hand, G ù 80
a is a weakly compact subset of !8S 1 , and so

we are under the hypothesis of the Krein±Millman lemma. So,

G ù 80
a 5 C 0( - ( G ù 80

a )) (26)

The result follows from the three identities. n

Definition 12. We define the space of states as the section of normal

positive continuous functionals on !S , that is,

N(!8S 1 ) 5 { r P !8S 1 : r (1) 5 1} (27)
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Of course, this is a weakly closed convex subset of !8S 1 . The extremal

elements of this convex set, which we denote by - N(!8S 1 ), are simply the

normal elements of - !8S 1 , and we will call them pure states.
It is easy to show that - N(!8S 1 ) is the collection of indecomposable

states, that is, states that do not admit a convex decomposition.

As in the normed case, the extremal decomposition theorem has an

integral expression.

Theorem 7 [Hegerfeldt]. Let G be as in the previous theorem and let us

consider the set - G of extremal elements of G . For every r P G there exists

a Radon measure m over - G such that

r 5 # - G

j d m ( j ) (28)

Remark 3. For the demonstration of the last theorem, nuclearity is an

essential assumption.

Remark 4. Observe that, in particular, we can take G 5 N(!8S 1 ).

4. FUNCTIONAL REPRESENTATION THEORY

Definition 13. We will say that a subset !Ãof !S is a system of observables

if and only if it is a closed subalgebra with unit of ! and is barreled provided

with the inherited topology. If a system of observables !Ãis a maximal

subalgebra of !, we will say that it is a complete system of observables.

Observe that, as a closed subalgebra of !, every system of observables

!Ãis a real, commutative, complete, nuclear, locally multiplicatively convex

algebra with unit in which, in addition, we have

pÃa (x 2) 5 ( pÃa (x))2 (29)

for every x P !Ã, where {pÃa } a P I is the basis of submultiplicative seminorms

of ! restricted to !Ã.

By !Ãa we will represent the Banach algebra which is the completion

of !Ã/Ker( pÃa ) with respect the topology induced by pÃa and with !Ã+ the cone
associated with the ordering inherited by !Ãfrom !S .

Definition 14. Let !Ãbe a system of observables. Let }Ãbe the family

of maximal closed ideals of !Ã. We will say that }Ãis the spectral space

associated with !Ã.

It can be shown [Michael] that there exists a one-to-one correspondence

between }Ãand the collection of the nontrivial multiplicative functionals on

!Ã, that is, that functionals r ÃP !Ã8 that satisfy
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r Ã(xy) 5 r Ã(x) r Ã(y) (30)

for every pair of elements x, y P !Ã. We will denote this collection by

- N(!Ã81 ). According to these correspondence, to each 7 r P }Ãthere is associ-

ated an element r ÃP - N(!Ã81 ) such that

7 r 5 Ker( r Ã) (31)

It can be shown that }Ãprovided with the finer topology that makes

this correspondence a continuous application, observing in - N(!Ã81 ) the weak

topology, is a convex Hausdorff space. So, we can identify }Ã with

- N(!Ã81 ).

Proposition 12. Every compact subset of }Ãis equicontinuous.

Proof. The demonstration of this proposition is immediate upon observ-

ing that for a subset of the dual space of a barreled space is equivalent to

saying that this subset is equicontinuous to saying that it is relatively compact
in the weak topology [Treves]. n

Proposition 13 [Michael]. Let 80
a be the polar set associated with the

seminorm pÃa , for every a P I. One has the following:

1. }Ã 5 ø a P I(}Ã ù 80
a ).

2. }Ã ù 80
a is a compact set for every a P I.

3. Each map that assigns to each element r ÃP }Ã ù 80
a the element

r Ãa P }Ãa , where by }Ãa we denote, of course, the collection of

multiplicative functionals on the Banach algebra !Ãa , according to

the expression

r Ã(x) 5 r Ãa ( f Ãa (x)) (32)

for every x P !Ã, is a continuous one-to-one homeomorphism on }Ãa .

Proposition 14 [Michael]. Let r Ãbe a multiplicative functional on !Ã.

Then, for every x P !Ã, r Ã(x) P s (x).

Theorem 8. Let !Ãx be the system of observables generated by an element

x P !S , that is, the completion of the polynomial algebra in x with real

coefficients with respect to the topology induced by !S . Then, the spectral

space associated with !Ãx , }Ã
x , is homeomorphic to the spectrum of the

observable x.

Proof. Cotlar [Cotlar71] demonstrates an analogous result in the context

of commutative C-algebras. So, for every a P I such that x ¸ Ker( pÃa ), one

has that }Ãx a , the spectral space associated with !Ãx a , is homeomorphi c to the
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spectrum of f Ãa (x). From Proposition 8 it follows that }Ãx ù 80
a is homeomor-

phic to s ( f Ãa (x)). With this and Theorem 2 we end the demonstration. n

Theorem 9. Every system of observables !Ãis isomorphic to the space
of continuous functions defined on the spectral space of !Ã, C(}Ã), provided

with the topology of uniform convergence on the collection of compact

subsets of }Ã. Moreover, each element that is never 2 1 has its inverse in it.

Proof. Consider the Gel’ fand transform

w : !Ã® C(}Ã)

x ® w (x) (33)

given by the expression

( w (x))( r Ã) 5 r Ã(x) (34)

for every r ÃP }Ãand consider the image of !Ãunder w , w (!Ã).

It is evident that w is a homomorphi sm from !Ãon w (!Ã) and, because

Ker( w ) 5 {0}, it is an algebraic isomorphism. Moreover, if ( w (x))( r Ã) Þ 2 1
for every x P !Ãone has that x is invertible [Michael] and w (x 2 1) 5 w 2 1(x),

so the second part of the theorem is proved.

Let us check that w (!Ã) 5 C(}Ã). Let z P C(}Ã) and for every a P I let

us define z a 5 z ) }Ãù 80
a . We associate to each z a the element x a P C(}Ãa ) by

virtue of the homeomorphism that exists between }Ã ù 80
a and }Ãa . As it is

known that !Ãa (see the classical Gel’ fand transform theorem [Bratteli]) is

isomorphic to C(}Ãa ), we can identify x a with the corresponding element in

!Ãa . It is easy to see that, using the notation introduced in Theorem 1,
,
f a b (x a ) 5 x b if a $ b . With this and the fact that !Ãis the Hausdorff

projective limit of the collection {!Ãa } a P I we have, finally, that x 5 (x a ) a P I P
!Ãsatisfies w (x) 5 z.

Now, let us show that the isomorphism is a topological one. Given an

equicontinuous subset _ , }Ã, for a zero neighborhood 8 of !Ãwe have
that _ , 80 ù }Ã; considering that 80 is weakly compact in !Ã8 and that

}Ãis weakly closed in !Ã8, it follows that 80 ù }Ãis a compact subset of

}Ã. With this fact it is clear that the topology of uniform convergence on the

equicontinuous subsets of }Ãand the topology of uniform convergence on

the compact equicontinuous subsets of }Ãare equivalent. Considering Proposi-
tion 12, it is clear that both coincide with the topology of uniform convergence

on the compact subsets of }Ãand that, identifying !Ãwith C(}Ã), the original

topology in !Ãis finer.

So, noting that the topology in !Ãa is the one of the uniform convergence,

one has that for every x P !Ãthere exists a real number l a . 0 such that
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pÄ a (x) # l a sup{ ) r Ãa ( f Ä a (x)) ) : r Ãa P }Ãa }

# l a sup{ ) r Ã(x) ) : r ÃP }Ãù 80
a } (35)

This last expression and the fact that }Ã ù 80
a is an equicontinuous

subset of }Ãend the demonstration. n

Of course, there exists in this case a decomposition theorem analogous

to Theorems 6 and 7.

Theorem 10. Let G Ãbe a convex subcone of !Ã81 . Then:

1. G Ãis generated by the set - G Ãof its extremal elements, that is,

G Ã5 C 0( - G Ã) (36)

2. For every r ÃP G Ãthere exists a Radon measure m on - G Ã, the set of

extremal elements of G Ã, such that

r Ã5 # - G Ã
j Ãd m ( j Ã) (37)

Remark 5. The commutativity of the product on !Ãguarantees that the

face G Ã( r Ã) is a lattice with respect to the order induced by G Ã. This fact is

essential to demonstrate that the measure m is unique.

5. THE GNS REPRESENTATION THEOREM

Definition 15. Let ! be a *-algebra. A linear functional r defined on

! is positive if and only if r (x*x) $ 0 for every x P !. We will denote the

collection of all positive functionals by !81 .

Proposition 15 [Allan]. Let ! be a *-algebra and r a positive functional

on !.

1. r (x*) 5 r (x) for every x P !.

2. The Cauchy±Schwarz inequality is satisfied, that is, for every pair

of elements x, y P !

) r (y*x) ) # r (y*y)1/2 r (x*x)1/2 (38)

3. If ! is a Banach *-algebra with unit, then r is continuous and

i r i 5 sup
i x i # 1

) r (x) ) 5 r (1) (39)

where, of course, 1 represents the unit in !
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Proposition 16. Let ! be a *-algebra. There exists a bijection between

!8S 1 and !81 such that every extremal element of !8S 1 is in correspondence

with an extremal element of !81 .

Proof. It is clear that the restriction of every element of !81 defines a

positive functional on !S and that if the element is extremal, then its restriction

is extremal.
So, we must demonstrate that every functional r P !8S 1 can be extended

under the same conditions to an element of !81 .

It is easy to see that if we define on ! the functional given by

r Ä (x) 5 r (Re(x)) 2 i r (Im(x)) (40)

where

Re(x) 5
x 1 x*

2
(41)

and

Im(x) 5
x 2 x*

2i
(42)

we have a positive form on !.
The indecomposability of r Ä follows from that of r and the fact that

Re( r Ä (x)) 5 r (Re(x)) and Im( r Ä (x)) 5 2 i r (Im(x)). n

Proposition 17 [Belanger]. Let % be a complete locally convex Hausdorff
space. There exists a bijection between the set of Hilbert subspaces of % and

the family of positive operators defined from %3 (the antidual space of %)

into %; we will denote this family by ++(%3 , %).

Proof.
1. Existence: Let N 5 { r P %3 : ^ H r , r & 5 0}, H P ++(% 3 , %). Consider

the quotient space % 3 /N and let us denote by V the pre-Hilbertian space

%3 /N provided with the inner product derived from the nonnegative sesquili-

near form that defines the operator H, i.e.,

h: %3 3 % 3 ® C

( r , j ) ® h( r , j ) 5 ^ H r , j & (43)

quotient modulo N. Finally, let us denote by f the canonical mapping from

%3 on %3 /N.

From the Cauchy±Schwarz inequality

) ^ H r , j & ) # ^ H r , r & 1/2 ^ H j , j & 1/2 (44)
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it is easy to derive that N 5 { r P % 3 : H r 5 0}, so the linear mapping

HÃ: V ® % 3

f ( r ) ® HÃf ( r ) 5 H r (45)

is continuous and can be uniquely extended to the completion of V . Let us

denote by HÄ the corresponding extended map.
Clearly, * 5 Im(HÄ ) with the Hilbertian norm that makes HÄ an isometry

is a Hilbert subspace of % with H as reproducing operator.

2. Uniqueness: It will be sufficient to see that * is determined by H.

From the equations

^ jx, r & 5 ^ x, j 3 r & 5 b(x, j 3 r ) (46)

and

H 5 jj 3 (47)

where j is the injection of * in %, is clear that the subspace j 3 (%3 ) is dense

in *.
The unitary ball B of * is weakly compact in %, so is weakly closed

in %. Since B is a convex set, B is closed in %.

One has, thus, that B is the closure in % of the set {H r : ^ H r , r & 1/2 #
1}; this shows that * is defined by H. Moreover, it can be proved [Belanger]

that given x P *,

i x i 5 H sup
) ^ x, r & )

^ H r , r & 1/2 : r P % 3 , ^ H r , r & . 0 J (48)

This ends the demonstration. n

Remark 6. Every Hilbert subspace * ,
j

% contains a privileged dense
subspace, $* 5 j 3 (%3 ).

Remark 7. The map j 3 is one to one if and only if * is dense in %. In

this case the triplet (% 3 , *, %) is called a Gel’ fand triplet [Gel’ fand64a].

Consider, now, a positive continuous form r on a topological *-algebra

! and the sesquilinear form defined by

h r : ! 3 ! ® C

(x, y) ® h r (x, y) 5 r ( y*x) (49)

From now on we will identify the dual space of ! with its corresponding

antidual space observing the relation

j (x) 5 ^ x*, j & (50)

for every x P ! and every j P !8.
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With this notation we have that

h r (x, y) 5 ^ x*y, r & (51)

for every pair of elements x, y P !.

The action of the algebra ! on its (anti)dual space is defined naturally by

^ y, x j & 5 ^ x*y, j & (52)

for every j P !8 and every x, y P !. This identity defines, of course, a

representation of ! on its dual. It can be proved that this representation is
separately continuous if !8 is provided with the weak topology, or with the

strong topology if, as in our case, the algebra is barreled.

Observing that r is positive, the kernel defined by equation (49) is

associated with a reproducing operator:

H r : ! ® !8

x ® H r x 5 x r (53)

It must be obvious that the kernel h r and the operator H r are invariant
under the action of !, that is,

h r (xz, y) 5 h r (z, x*y) (54)

for every x, y, z P !, or

xH r y 5 H r xy (55)

for every pair x, y P !.

So, consider the Hilbert subspace * r ,
j

!8 associated with the reproduc-

ing operator H r . The subspace $* r , * f given by

$* r 5 j 3 ! 5 {x r : x P !} (56)

is, clearly, dense in * r and invariant under the left multiplication by elements

of !.

With these definitions is clear that the inner product in * r follows from

the extension by continuity of the form

b: $* r 3 $* r ® C

(x r , y r ) ® b(x r , y r ) 5 h r (x, y) (57)

to all * r .

We will denote by p r the representation of ! that is obtained as a

restriction to $* r of the representation of !8. So, we have

p r (x) w 5 x w (58)

for every x P ! and every w P $* r .
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Finally, p r is a *-representation of ! in * r , in general, by unbounded

operators with common invariant domain $* r .

Definition 16. The triplet ( p r , * r , $* r ) is called the GNS representation

of !.

Finally, we have the following extension of the GNS representation

theorem.

Theorem 11. Let ! be a nuclear barreled b*-algebra with unit r P
!81 a positive form on !. There exists a unique (up to unitary equivalence)

cyclic *-representation, the GNS representation of !, p r , on a Hilbert space

* r such that

r (x) 5 b( p r (x) f , f ) (59)

for every x P !, where b is the inner product in * r and f the cyclic vector

in * r . Moreover, this representation is essentially self-adjoint and the invariant
common domain $* r of the operators representing ! can be topologized to

conform a rigged Hilbert space. Observing this topology, all the operators

representing ! are continuous on $* r .

Proof. The uniqueness of the GNS representation follows from the fact

that the expression

r (x) 5 h r (x, 1) (60)

defines a homeomorphism between the family of positive functionals on !
and the collection of Hilbert subspaces of ! (see Theorem 17). The fact that

r 1 is a cyclic vector for the representation is evident. Finally, essentially

self-adjointness follows from the symmetry of the algebra. On the other hand,

as $* r is isomorphic to the quotient space !/_ r , where _ r is the kernel of

the reproducing operator H r (see Theorem 17) and _ r is closed in !, we

have that $* r is complete, nuclear, and barreled. The form b given by the
expression (57) is separately continuous (thus continuous, since $* r is bar-

reled) on $* r 3 $* r , and we have that $* r is a nuclear space rigged by

* r [Gel’ fand64b]. n

Remark 8. The occurrence of this kind of space in quantum mechanics
is not new: see, for example, [Bogolubov] and [Roberts].

6. AN EXAMPLE

Let us finally consider an example which is very familiar from quan-

tum mechanics.
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Let V be a locally convex space. The tensor algebra over V , 7( V ), is

defined as the locally convex direct sum of the integer tensor powers of this

space, i.e.,

7( V ) 5 C % V % ( V ^ ÃV ) % ( V ^ ÃV ^ ÃV ) % ? ? ? (61)

or, compactly,

7( V ) 5 %
`

n 5 0
V ^

Ã
n (62)

where, by definition, V ^
Ã
0 5 C .

Let us remember that the locally convex direct sum of a family of locally

convex spaces is defined as the algebraic direct sum of these spaces provided

with the weaker topology that makes each of the corresponding canonical

injections a continuous map.

The sum and the scalar product are defined componentwise, i.e., if x 5
(x0, x1, . . . , xn, . . .) P 7( V ), y 5 ( y0, y1, . . . , yn, . . .) P 7( V ), and l P C ,

x 1 y 5 (x0 1 y0, x1 1 y1, . . . , xn 1 yn, . . .) (63)

l x 5 ( l x0, l x1, . . . , l xn, . . .) (64)

On the other hand, the multiplication law is given by

xy 5 1 x0 ^ y0, x0 ^ y1 1 x1 ^ y0, . . . , o
n

k 5 0
xk ^ yn 2 k, . . .2 (65)

If a continuous conjugation is defined on the space V we can define an

involution in 7( V ) in the following way: given an element xk 5 x1
k ^ x2

k ^
? ? ? ^ xk

n P V ^ k, we make

(xk)* 5 (x1
k ^ x2

k ^ ? ? ? ^ xk
k)*

5 (xk
k)* ^ (xk 2 1

k )* ^ ? ? ? ^ (x1
k)* (66)

We extend by continuity and linearity the operation to V ^
Ã
k and finally we

define the involution in 7( V ) componentwise, i.e., given x 5 (x1, x2, . . . ,

xn, . . .) P 7( V ), we have

x* 5 (x1, x2, . . . , xn, . . .)*

5 (x*1 , x*2 , . . . , x*n , . . .) (67)

Obviously, the unit element in 7( V ) is the element 1 5 (1, 0, . . . , 0, . . .).

Now, suppose that V is a nuclear FreÂchet space and let us denote by

7n( V ) the direct sum of the tensor powers of V of order less than n, i.e.,
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n timeso
7n( V ) 5 C % V % ( V ^ ÃV ) % ? ? ? % ( V ^ ÃV ^ Ã? ? ? ^ ÃV )

(68)
%
n

j 5 0
V ^

Ã
j5

Clearly, 7( V ) is the strict inductive limit of the collection {7n( V )} `
n 5 0, so

7( V ) is a nuclear +^*-algebra [Belanger]. With this we have that the algebra

is complete, barreled, and, of course, nuclear.

To see that, in fact, 7( V ) is a b*-algebra it is sufficient to observe that
it can be identified with the Hausdorff projective limit of a collection of C*-

algebras; remember that, since V is a nuclear metrizable space, there exists

a nondecreasing basis {p a } a P I of continuous seminorms such that each semi-

norm is Hilbertian [Pietsch]. Let us denote by V Ãa the Hilbert space which

is the completion of the quotient space V /Ker( p a ) with respect to the quotient

norm pÃa 5 p a /Ker(p a ) and consider the tensor C*-algebras 7( V Ãa ) 5
% `

n 5 0 V Ã̂ Hn
a ; it must be evident that 7( V ) is the Hausdorff projective limit

of the set {7( V Ãa )} a P I with respect to those mappings that inject each 7( V Ãa )

into 7( V Ãb ) if a $ b , where the order in the index set I is the induced by

the ordering of the basis of seminorms.

As a particular case, consider that in which V 5 6( R 4), the space of

rapidly decreasing and infintely differentiable functions on R 4 or Schwartz’ s
space [Borchers90].

7. CONCLUDING REMARKS

As we have said, an algebraic approach to quantum mechanics is intended
to be an extension of the traditional Hilbert space formulation. In this work

we have incorporated the abstract counterparts of unbounded operators into

the algebra that characterizes the physical system under consideration. The

main results of the C*-algebra formalism have been proved for a closely

related but a more general kind of algebra. We proved an extremal decomposi-

tion theorem which is a result closely related to the quantum mechanical
spectral postulate and a generalization of the GNS classical representation

theorem that deals with a representation of the characteristic algebra on a

rigged Hilbert space. In almost all of our demonstrations an essential point

was the fact that every b*-algebra is the Hausdorff projective limit of a

collection of C*-algebras. With respect to this, it would be interesting to
analyze the connection between the GNS representation we proved for b*-

algebras and the GNS representations of the corresponding C*-algebras. We

observe that, if this connection is satisfactory, very important concepts like

the equivalence of states and definitions like that of KMS states could be

easily generalized.
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